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This essay pertains to an attempt to apply social constructivism to mathematics
and mathematics education.1 Paul Ernest, who is to be commended for spearheading
a discussion within education along these lines for some years,2 develops in his
recent book, Social Constructivism as a Philosophy of Mathematics, a social
constructivist philosophy of mathematics.3 He summarizes his position near the end
of the book:

Social constructivism takes the primary reality to be persons in conversation; persons
engaged in language games embedded in forms of life. These basic social situations have a
history, a tradition, which must precede any mathematizing or philosophizing. We are not
free-floating, ideal cognizing subjects but fleshy persons whose minds and knowing have
developed through our bodily and social experiences. Only through our antecedent social
gifts can we converse and philosophize. I have argued for epistemological fallibilism and
relativism, but instead of rendering social constructivism groundless and rootless, I have
found its grounds and roots in the practices and traditions of persons in conversation (SCPM,
275).

Ernest welds together arguments that largely derive from I. Lakatos, Ludwig
Wittgenstein, and L.S. Vygotsky. I do not comment on whether Ernest correctly
represents these three, nor do I comment on whether he coherently combines them.
Instead, his finished position is contrasted to mathematical Platonism and to a
position that is roughly Aristotelian, and finally his position is assessed in light of
an experience of mathematics students. The intent of this paper is not to answer
Ernest definitively, nor address social constructivism in general, but to begin a
critique of his position and the social, political, and ethical consequences that he
draws from his position.

One aspect of Ernest’s position is not controversial. It is difficult to imagine the
practice of mathematics arising outside the influence of language and social factors.
However, Ernest’s radical fallibilism is controversial, especially for many math-
ematicians who hold that knowledge in their field is secure. Ernest holds:

that it is theoretically possible that any accepted knowledge including mathematical
knowledge may lose its modal status as true or necessary. Such knowledge may have its
justificatory warrant rejected or withdrawn (losing its status as knowledge) and be rejected
as unwarranted, invalid, or even false (SCPM, 10).

A standard argument against radical fallibilism is that it flies in the face of
secure knowledge such as the “irrational” nature of the square root of the number 2
and the Pythagorean theorem, in addition to conflicting with the truth of simple
propositions such as 1+1=2. Furthermore, it does not necessarily follow that
knowledge is insecure because it is acquired by engagement in “language games
embedded in forms of life.” In fact, the history of mathematics indicates that
mathematical knowledge is secure. For example, mathematical knowledge such as
the Pythagorean theorem, acquired in antiquity, for the most part is just as accepted
now as it ever has been. As G.H.Hardy puts it:
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The history of mathematics shows conclusively that mathematicians do not evacuate
permanently ground which they have conquered once. There have been many temporary
retirements and shortenings of the line, but never a general retreat on a broad front.4

Ernest concedes that mathematical knowledge is in a way stable:
Mostly, because of the precision and explicitness of mathematics and the shared perspectives
of its practitioners, there is little dispute over what follows from given rules and systems in
mathematics. However, agreement is achieved through consensus or victory in language
games and forms of life rather than by reference to extramathematical absolutes, even if the
rhetoric of such agreement uses the language of extramathematical absolutes (SCPM, 259).

In this passage Ernest seems to argue that the stability of mathematical knowledge
rests on the precision and explicitness of mathematics. This precision and explicit-
ness is due to victories in “language games and forms of life.” Nonetheless, he does
not back down from his fallibilism:

The novelty of social constructivism…is to realize both that mathematical knowledge is
necessary, stable, and autonomous but that this coexists with its contingent, fallible, and
historically shifting character (SCPM, 259).

(It is not entirely clear how mathematical knowledge can be both necessary and
contingent, both stable and fallible, and both “autonomous” and “historically
shifting.”) In contrast to Ernest, I present a case that the stability of at least some
mathematical knowledge is due to much more than the “languages games and forms
of life” in mathematical enquiry. Instead the stability of this knowledge is derived
from the existence of mathematical objects that we intuit. In fact, the precision and
explicitness of mathematical language may in a way be due to the character of
mathematical objects, a question that is later addressed.

MATHEMATICAL  OBJECTS

In philosophy of mathematics, mathematical Platonism is most often identified
with the view that abstract mathematical objects are real and exist independently of
cognizers and that the truth of propositions about mathematical objects is indepen-
dent of cognizers. Ernest, of course, denies this outright, claiming instead that “the
objects of mathematics…are cultural constructions” (SCPM, 201). The metaphysi-
cal outlook of mathematical Platonism is complemented by an epistemological
stance which contends that intuition is used to gain knowledge of abstract math-
ematical objects. Kurt Gödel, one of the most prominent mathematicians of this
century, famously contended that:

despite their remoteness from sense experience, we do have something like a perception also
of the objects of set theory, as is seen from the fact that the axioms force themselves upon
us as being true. I do not see any reason why we should have any less confidence in this kind
of perception, i.e., in mathematical intuition, than in sense perception.5

Thus, confidence in mathematical intuition separates mathematical Platonism from
the type of fallibilism advocated by Ernest. Regarding mathematical intuition,
Ernest holds that:

[i]f access [to mathematical objects] is through intuition, then a reconciliation is needed
between the facts that (1) different mathematicians’ intuitions vary, in keeping with the
subjectivity of intuition, and (2) Platonist intuition must be objective, or intersubjective at
least, and lead to agreement (SCPM, 62).

Ernest seems to be assuming that the intuition of mathematical objects, which Gödel
speaks of, is necessarily subjective. This is far from a settled question. Following
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Gödel, Charles Parsons and other philosophers argue that mathematical intuition is
strongly analogous to perception and, like perception, is objective.6

Finally, mathematical Platonism rejects the assessment of mathematics as an
enterprise largely concerned with and determined by “language games,” claiming
instead that we intuit mathematical objects. James Brown, a mathematical Platonist,
holds that intuiting mathematical objects:

provides [a] great advantage of platonism over some of its rivals….It explains the psycho-
logical fact that people feel the compulsion to believe that, say, 5+7=12. It’s like the
compulsion to believe that grass is green. In each case we see the relevant objects.
Conventionalists make mathematics out to be like a game in which we could play with
different rules. Yet, “5+7=12” has a completely different feel from “Bishops move diago-
nally.” Platonism does much justice to these psychological facts.7

There is evidently a sharp contrast between the views of Ernest’s social
constructivism and mathematical Platonism. Ernest holds that “language games and
forms of life” provide the ground for mathematic knowledge. Mathematical Platonism
holds that there are real abstract mathematical objects and that knowing about them
involves something like perception. There is some slight similarity between the two
views regarding the possibility of error in that Ernest contends that all mathematical
knowledge is fallible because it is grounded in “language games embedded in forms
of life” and mathematical Platonism may grant that some mathematical knowledge
can be mistaken. Nonetheless, Ernest’s fallibilism supposes that the whole of
mathematical knowledge can be overturned whereas for mathematical Platonism
this knowledge is in general secure. By denying that there are mathematical objects,
Ernest’s social constructivism is naturally prone to extreme fallibilism. In contrast,
mathematical Platonism, by granting the existence of mathematical objects that we
intuit, is optimistic about the stability of our mathematical knowledge. Which
position do mathematicians who consider such questions support? Probably most
would choose mathematical Platonism. For it is extremely difficult to imagine that
the body of mathematical knowledge can be rejected, even piecemeal over many
years. How could it possibly be that the Pythagorean theorem is wrong?

A previous suggestion that mathematical language may be in a way constrained
by the character of mathematical objects is now considered. It is likely true that in
order to talk or write about mathematical objects we need precise and explicit
language because these objects are so precise and definite. There is no choice in the
matter. So the language of mathematics can be likened to the language of skilled
trades. A machinist, for example, needs to learn the precise and explicit language of
her trade in order to produce a part according to specifications. Much the same
situation prevails in sciences such as chemistry and physics. So it seems plausible
that the precise and explicit language of mathematics is not merely due to a social
agreement among mathematicians, but also is due to the nature of mathematical
objects themselves. Were it not for the precision and explicitness of mathematical
language, there could be no discourse about mathematical objects.8

In response to this argument, Ernest would likely rely on his position that there
are no real mathematical objects to constrain mathematical discourse. Mathematical
objects are social constructs. However, there seems to be a class of mathematical
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objects that are uncontroversially real and that, if they are to be investigated, require
precise language to talk about them. These are concrete geometric diagrams such as
a square printed on piece of paper. Strict language is needed to investigate the
properties of such diagrams. Suppose we want to ascertain what angle a straight line
drawn from one corner to a diagonal corner of a square makes with the sides of the
square. In order even to talk about this problem, we need terms like “side,” “corner,”
“angle,” that strictly correspond to concrete sides, corners, and angles. The applica-
tion of the term “square” is also constrained. Without strict language to talk about
this problem, the problem would not get addressed. We cannot say that a circle is a
square without talking mathematical nonsense. Similarly, if Socrates and the boy in
Plato’s dramatization in the Meno could not agree that a square was drawn in the
sand, the boy could not have learned to double a square.9

Although this response to Ernest bypasses the mathematical Platonist’s notion
of abstract mathematical objects, it need not fail to be concerned with mathematical
universals. Universals could be implicated, although not necessarily of a Platonist
kind. When I recognize a particular concrete square, I recognize it as an instance of
squareness. This characteristic of squareness, if the Aristotelian notion of universals
is adopted, can be construed to be “in” its instances. So, a concrete particular square
is a square because it has squareness in it. The same restrictions that pertain to talk
about concrete squares also apply to discourse about the universal squareness. In
fact, under the Aristotelian theory of universals there is no separate existence for the
universal apart from concrete particulars to talk about.

Furthermore, although this argument sidesteps the issue of abstract mathemati-
cal objects (because diagrams of geometric shapes are concrete, not abstract), it
contributes to the next argument that directly concerns a range of abstract math-
ematical objects, an argument that pertains to the question: How do we come to
comprehend or intuit abstract geometric objects such as perfect circles? One way
involves imagining a process of successive, unending refinements to a concrete
circle. A perfect circle is considered to be the ultimate product of these refinements.
This approach is basically the same as that recommended by Lonergan:

As every schoolboy knows, a circle is a locus of coplanar points equidistant from a center.
What every schoolboy does not know is the difference between repeating that definition as
a parrot might and uttering it intelligently. So, with a sidelong bow to Descartes’s insistence
on the importance of understanding very simple things, let us inquire into the genesis of the
definition of the circle.…

Imagine a cartwheel with its bulky hub, its stout spokes, its solid rim.

Ask a question. Why is it round?

Limit the question. What is wanted is the immanent reason or ground of the roundness of the
wheel. Hence a correct answer will not introduce new data such as carts, carting, transpor-
tation, wheelwrights, or their tools. It will refer to the wheel.

Consider a suggestion. The wheel is round because its spokes are equal. Clearly, that will not
do. The spokes could be equal yet sunk unequally into the hub and rim. Again, the rim could
be flat between successive spokes.

Still, we have a clue. Let the hub decrease to a point; let the rim and spokes thin out into lines;
then, if there were an infinity of spokes and all were exactly equal, the rim would have to be
perfectly round; inversely, were any of the spokes unequal, the rim could not avoid bumps
or dents. Hence we can say that the wheel necessarily is round inasmuch as the distance from
the center of the hub to the outside of the rim is always the same.10
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Does this way of comprehending an abstract mathematical object require precise
language? It seems obvious that it does because, to consider again the example of a
circle, the concept of a perfect circle (or of perfect roundness), fundamentally relies
on the concept of a concrete circle, for which precise language is needed, as
previously argued. So, in the case of abstract circles, language is constrained because
these abstract objects cannot be discussed without using precise language. Notice
that in this (roughly Aristotelian) approach, the abstract objects — a perfect circle
in the example given — need not have any ontological status beyond being an object
of thought. Nonetheless, our way of apprehending abstract objects, by way of
imagining successive refinements of concrete shapes, constrains the language we
use to discuss and understand them.11

Of course, only a corner of mathematics has been considered. Nonetheless, this
argument undermines Ernest’s social constructivism. For it supports the claim that
mathematical language is constrained by the character of mathematical objects, if
these objects are to be discussed at all. This implies that mathematical language does
not exist at the whim of “language games embedded in forms of life.” Additionally,
although this roughly Aristotelian approach does not exclude mistakes, the knowl-
edge gained by means of it seems to be secure. For as in the case of mathematical
Platonism, knowledge is based on a relation between a thinker and real mathematical
objects. The difference with Platonism is that the objects are concrete, as in the case
of the concrete circles from which successive, imagined approximations are made.

Summarizing the argument to this point, Ernest proposes that mathematical
knowledge is prone to a radical fallibilism, a view that relies on the claim that
mathematics is solely a product of “language games embedded in forms of life.” I
have presented a mathematical Platonist response to Ernest and a response that is
roughly Aristotelian. Both of these approaches seem to explain why mathematical
discourse is stable in a way that Ernest does not acknowledge. Mathematical
discourse is not merely a matter of agreement in the “language game” of mathemat-
ics, but of the character of mathematical objects that constrains the language that we
use to investigate them, if they are to be investigated at all. These philosophical
alternatives to Ernest’s social constructivism stand in opposition to his fallibilism,
while admitting that mistakes can be made.

EXPERIENCE OF STUDENTS

The social, political, and ethical conclusions that Ernest draws from his social
constructivism provide a way to assess to his theory:

What is…needed…is an ethics of mathematics, one that acknowledges the social responsi-
bility of mathematics and how it is implicated in the great issues of freedom, justice, trust,
and fellowship. It is not that this need follows logically from social constructivism: It follows
morally.…I have argued that in the social construction of mathematics we act as gods in
bringing the world of mathematics into existence. Thus mathematics can be understood to
be about power, compulsion, and regulation. The mathematician is omnipotent in the virtual
reality of mathematics, although subject to the laws of the discipline; and mathematics
regulates the social world we live in.…[In] accepting this awesome power it also behoves us
to strive for wisdom and to accept the responsibility that accompanies it (SCPM, 275-76).

I do not dispute the need to discuss social, ethical, and political questions in
relation to mathematics. However, I dispute Ernest’s assessment that mathematics
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is about “power, compulsion, and regulation” and that the mathematician is
omnipotent in “the virtual reality of mathematics.” These assessments are too
simplistic. A way to begin to appraise Ernest’s view is to consider learning situations
in elementary mathematics education. We would expect, given Ernest’s assessment,
that the experience of students is constituted by their being manipulated within a
“language game.” However there are learning situations that suggest that Ernest’s
position does not apply to the experience of many students.

Consider the following algebraic identity that students encounter: (a + b)2 = a2

+ 2ab + b2.

For example, (4 + 1)2 = 16 + 8 + 1. This identity is arrived at by following a
procedure that adheres to rules of distributivity, commutativity, and associativity
over multiplication and addition. Under these rules, the derivation is:

(a + b)2 = (a + b) x (a + b)

= axa + axb + bxa + bxb

= axa + axb + axb + bxb

= a2 + 2ab + b2.

For Ernest these rules are merely part of a “language game.” They have no bearing
on objective knowledge. But what is the experience of students? Many students
probably just memorize the rules and apply them on tests, if they can. But some
students check out the results and find that indeed the identity, (a + b)2 = a2 + 2ab
+ b2, derived from the algebraic rules, holds over every instance that they check. This
inductive testing gives the students a sense of the correctness of the algebraic rules
independent of taking the word of the teacher or the textbook. There are other ways
for students to ascertain the correctness of the algebraic rules. One of these is to
consider that (a + b)2 gives the area of a square illustrated below with each side of
length a + b.

Now students can “see” that the area of the square with sides of length a + b is
also the combined area of each of the four rectangles inside the square. This
combined area is a2 + 2ab + b2. So (a + b)2 and a2 + 2ab + b2 must be equal because
they are both equal to the area of the same square. This result holds no matter how
big the square is and no matter what relative length a and b are to each other. This
too can be “seen” by students.

a b

a

b
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These observations, which many students assimilate, put in question the
contention that mathematics is an instance of “power, compulsion, and regulation”
in which the mathematician is omnipotent in “the virtual reality of mathematics.”
The example of the two ways to calculate the area of a square shows the truth of the
identity (a + b)2 = a2 + 2ab + b 2 is independent of algebraic manipulation. Each of
(a + b)2 and a2 + 2ab + b2 is equal to the area of the same square; so they must be equal
to each other. The algebraic rules, instead of getting their “ground and roots” by
conforming to “language games embedded in forms of life” are justified by the
correct results they yield. That being the case, Ernest’s picture of mathematics is
problematic. It is definitely not that picture that many students experience.

This argument implies that Ernest’s view that mathematics is an instance of
“power, compulsion, and regulation” is unjustified and his theory is one-sided. This
problem does not obtain in the two philosophical alternatives to Ernest’s view that
have been presented, those of mathematical Platonism and a view of mathematics
that is roughly Aristotelian. The reason these two alternatives contrast with Ernest’s
stance in this regard is that they both, in different ways, propose that mathematical
knowledge is based on comprehending real mathematic objects. In the case of
Platonism, these are real abstract objects. In the case of the roughly Aristotelian
stance, these are concrete objects which are used as starting points for imagining
successive refinements to abstract objects. These alternatives to Ernest’s social
constructivism seem to better capture the nature of the experience of students,
described above, in which intuiting or perceiving mathematical objects provides a
basis for students to judge the correctness of some algebraic rules. So learning these
algebraic rules is not merely a matter of students’ being manipulated in a “language
game.”

Finally, although a couple of philosophical approaches to mathematics are
favorably contrasted to Ernest’s social constructivism, a philosophy of mathematics
is not proposed in this paper. Furthermore, although Ernest’s social constructivism
is problematic, a critique of social constructivism in general is not implied by the
arguments presented here. This reflects my intent, which is not to dismiss social
constructivism’s relevance to mathematics, mathematics education, or education in
general, but to begin an assessment of Ernest’s attempt to apply his version of social
constructivism to mathematics and to begin an assessment of his social, political,
and ethical conclusions.

1. Social constructivism which is an influential theory in education is construed in a wide variety of ways
as Sally Haslanger, “Objective Reality, Male Reality, and Social Construction” in Women, Knowledge,
and Reality: Exploration of Feminist Philosophy, 2d ed. (New York: Routledge,1996), 84-107 notes:
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possible to find the claim that ‘everything’ is socially constructed, or that it is socially constructed ‘all
the way down.’” Despite this diversity it seems that a common thread running through social
constructivist theories is a rejection of the epistemologies of both rationalism and empiricism. Instead,
it is argued that the social relations both “construct” our knowledge and somehow overturn it.
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